RECURSIVE STRATEGY FOR DECOMPOSING BETTI DIAGRAMS OF COMPLETE INTERSECTIONS

Courtney Gibbons Hamilton College

jointly with Robert Huben, Branden Stone arxiv/1708.05440

BACKGROUND

Let $S = k[x_1, x_2, \dots, x_d]$ (standard graded k-algebra over a field k).

Let M be a finitely generated graded S-module with minimal graded free resolution

$$F_{.}:0\leftarrow \oplus_{j}S(-j)^{\beta_{0,j}(M)}\leftarrow \oplus_{j}S(-j)^{\beta_{1,j}(M)}\leftarrow \cdots \leftarrow \oplus_{j}S(-j)^{\beta_{d,j}(M)}\leftarrow 0,$$

where $\beta_{i,j}(M)$ is the number of minimal degree j generators of $Syz_i(M)$.

Let $S = k[x_1, x_2, \dots, x_d]$ (standard graded k-algebra over a field k).

Let M be a finitely generated graded S-module with minimal graded free resolution

$$F_{.}:0\leftarrow \oplus_{j}S(-j)^{\beta_{0,j}(M)}\leftarrow \oplus_{j}S(-j)^{\beta_{1,j}(M)}\leftarrow \cdots \leftarrow \oplus_{j}S(-j)^{\beta_{d,j}(M)}\leftarrow 0,$$

where $\beta_{i,j}(M)$ is the number of minimal degree j generators of $Syz_i(M)$.

The **Betti diagram** of an S-module M tabulates the ranks of the free modules in the free resolution of M:

		0	1	• • •	İ	 n
	0	$\beta_{0,0}(M)$	$\beta_{1,1}(M)$		$\beta_{i,i}(M)$	 $\beta_{n,n}(M)$
	1	$\beta_{0,0}(M)$ $\beta_{0,1}(M)$	$\beta_{1,2}(M)$		$\beta_{i,i+1}(M)$	 $\beta_{n,n+1}(M)$
$\beta(M) =$:	:	:		:	: .
	j	$\beta_{0,j}(M)$	$\beta_{1,1+j}(M)$		$\beta_{i,i+j}(M)$	 $\beta_{j,n+j}(M)$
	:	:	:		:	:

BOIJ-SÖDERBERG THEORY

An S-module M is called **pure** if there is a **degree sequence** $d = (d_0 < d_1 < \cdots < d_n)$ such that $\beta_{i,j}(M) = 0$ if $j \neq d_i$.

BOIJ-SÖDERBERG THEORY

An S-module M is called **pure** if there is a **degree sequence** $d = (d_0 < d_1 < \cdots < d_n)$ such that $\beta_{i,j}(M) = 0$ if $j \neq d_i$.

Notation: π (d) is the Betti diagram of the* pure module M with the associated degree sequence $\mathbf{d}=(d_0 < d_1 < \cdots < d_n)$ with a (technical) scaling factor. Given two degree sequences \mathbf{c} and \mathbf{d} , we say $\mathbf{c} \leq \mathbf{d}$ if $c_i \leq d_i$ for each i.

BOIJ-SÖDERBERG THEORY

An S-module M is called **pure** if there is a **degree sequence** $d = (d_0 < d_1 < \cdots < d_n)$ such that $\beta_{i,j}(M) = 0$ if $j \neq d_i$.

Notation: π (d) is the Betti diagram of the* pure module M with the associated degree sequence $\mathbf{d}=(d_0< d_1<\cdots< d_n)$ with a (technical) scaling factor. Given two degree sequences \mathbf{c} and \mathbf{d} , we say $\mathbf{c}\leq \mathbf{d}$ if $c_i\leq d_i$ for each i.

Theorem (Boij-Söderberg (n \leq 2), Eisenbud-Schreyer (all n))

For every S-module M, there exists a unique list of totally ordered degree sequences $\mathbf{d}^1 < \cdots < \mathbf{d}^r$ so that

$$\beta(\mathsf{M}) = \sum \mathsf{q}_{\mathsf{i}} \pi \left(\mathsf{d}^{\mathsf{i}} \right)$$

where $q_i \in \mathbb{Q}_{\geq 0}.$

Example ($M = S/(x, y^2, z^2)$ **)**

Example ($M = S/(x, y^2, z^2)$ **)**

$$= 8 \cdot \pi (0,1,3,5) + 8 \cdot \pi (0,2,3,5) + 8 \cdot \pi (0,2,4,5).$$

Example ($M = S/(x, y^2, z^2)$ **)**

 $= 8 \cdot \pi (0, 1, 3, 5)$

 $+8 \cdot \pi (0,2,4,5)$.

	0	1	2	3
0:	3	1		
1:		3	2	
2:			3	3

 $+8 \cdot \pi (0,2,3,5)$

MOTIVATING QUESTION

The Betti diagram of a complete intersection $M=S/(f_1,\ldots,f_d)$ over the ring S is determined by the degrees of its minimal generators.

Example

If
$$S = k[x]$$
 and $M = S/(f)$, then $\beta(M) = deg(f) \cdot \pi (0, deg(f))$.

MOTIVATING QUESTION

The Betti diagram of a complete intersection $M=S/(f_1,\ldots,f_d)$ over the ring S is determined by the degrees of its minimal generators.

Example

If
$$S = k[x]$$
 and $M = S/(f)$, then $\beta(M) = \deg(f) \cdot \pi$ (0, $\deg(f)$).
If $S = k[x, y]$ and $M = S/(f, g)$, then
$$\beta(M) = \deg(f) \deg(g) \cdot \pi (0, \deg(f), \deg(f) + \deg(g)) + \deg(f) \deg(g) \cdot \pi (0, \deg(g), \deg(f) + \deg(g)).$$

MOTIVATING QUESTION

The Betti diagram of a complete intersection $M=S/(f_1,\ldots,f_d)$ over the ring S is determined by the degrees of its minimal generators.

Example

If
$$S = k[x]$$
 and $M = S/(f)$, then $\beta(M) = \deg(f) \cdot \pi$ (0, $\deg(f)$).
If $S = k[x, y]$ and $M = S/(f, g)$, then

$$\beta(M) = \deg(f) \deg(g) \cdot \pi (0, \deg(f), \deg(f) + \deg(g))$$
$$+ \deg(f) \deg(g) \cdot \pi (0, \deg(g), \deg(f) + \deg(g)).$$

Question

For $S=\Bbbk[x_1,\ldots,x_d]$ and any complete intersection M where

$$\beta(M) = q_1 \pi \left(\mathbf{d}^{(1)} \right) + \dots + q_r \pi \left(\mathbf{d}^{(r)} \right),$$

is there a uniform formula for determining q_j and $\mathbf{d}^{(j)}$ in terms of deg(f_i)?

Proposition (GJMRSW 2015)

Let S be $\Bbbk[x_1,x_2,x_3]$, and let $I=(f_1,f_2,f_3)$ be an ideal generated by a homogeneous regular sequence with $deg(f_i)=a_i$ where $a_i\leq a_{i+1}$ for all i. Then

$$\begin{split} \beta(\mathsf{S/I}) = \quad & a_1 a_2 (a_2 + a_3) \cdot \pi \, (0, a_1, a_1 + a_2, a_1 + a_2 + a_3) \\ & + a_1 a_2 (a_3 - a_1) \cdot \pi \, (0, a_2, a_1 + a_2, a_1 + a_2 + a_3) \\ & + 2 a_1 a_2 (a_1 + a_3 - a_2) \cdot \pi \, (0, a_2, a_1 + a_3, a_1 + a_2 + a_3) \\ & + a_1 a_2 (a_3 - a_1) \cdot \pi \, (0, a_3, a_1 + a_3, a_1 + a_2 + a_3) \\ & + a_1 a_2 (a_2 + a_3) \cdot \pi \, (0, a_3, a_2 + a_3, a_1 + a_2 + a_3) \, . \end{split}$$

WHAT ABOUT CODIM \geq 4?

Question

Does the decomposition behave uniformly for all d?

Question

Does the decomposition behave uniformly for all d?

$$I = (x^3, y^4, u^5, v^7)$$

$$J = (x, y^2, u^4, v^8)$$

$$K = (x^4, y^5, u^7, v^9)$$

COMPATIBILITY AND STABILIZATION OF ELIMINATION TABLES

Let c > 1. Consider a complete intersection

$$R = \Bbbk[x_1, \dots, x_c, x_{c+1}]/(x_1^{a_1}, \dots, x_c^{a_c}, x_{c+1}^{a_{c+1}}).$$

A decomposition of $\beta_{c+1}=\beta(a_1,\ldots,a_c,a_{c+1})$ is given as follows:

Let c > 1. Consider a complete intersection

$$R = \Bbbk[x_1, \dots, x_c, x_{c+1}]/(x_1^{a_1}, \dots, x_c^{a_c}, x_{c+1}^{a_{c+1}}).$$

A decomposition of $\beta_{c+1} = \beta(a_1, \dots, a_c, a_{c+1})$ is given as follows:

• **Phase 1:** Calculate the decomposition of β_c and form coefficients for first third of β_{c+1} . Eliminate entries of β_{c+1} according to elimination order of β_c .

Let c > 1. Consider a complete intersection

$$R = \Bbbk[x_1, \dots, x_c, x_{c+1}]/(x_1^{a_1}, \dots, x_c^{a_c}, x_{c+1}^{a_{c+1}}).$$

A decomposition of $\beta_{c+1} = \beta(a_1, \dots, a_c, a_{c+1})$ is given as follows:

- **Phase 1:** Calculate the decomposition of β_c and form coefficients for first third of β_{c+1} . Eliminate entries of β_{c+1} according to elimination order of β_c .
- · Phase 2: Eliminate entires right to left along the columns.

Let c > 1. Consider a complete intersection

$$R = \Bbbk[x_1, \dots, x_c, x_{c+1}]/(x_1^{a_1}, \dots, x_c^{a_c}, x_{c+1}^{a_{c+1}}).$$

A decomposition of $\beta_{c+1} = \beta(a_1, \dots, a_c, a_{c+1})$ is given as follows:

- **Phase 1:** Calculate the decomposition of β_c and form coefficients for first third of β_{c+1} . Eliminate entries of β_{c+1} according to elimination order of β_c .
- · Phase 2: Eliminate entires right to left along the columns.
- Phase 3: Finish eliminating the diagram using the dual of the pure diagrams from the first half of the algorithm.

- Phase 1: Calculate the decomposition of β_c and form coefficients for first third of β_{c+1} . Eliminate entries of β_{c+1} according to elimination order of β_c .
- Phase 2: Eliminate entires left to right along the columns.
- Phase 3: Finish eliminating the diagram using the dual of the pure diagrams from the first half of the algorithm.

MAIN THEOREM (GHS 2017)

Assume the betti diagram of the complete intersection generated in degrees $a_1 \leq \ldots \leq a_c$ with BS-decomposition

$$\beta(a_1,\ldots,a_c)=\sum_{s=1}^{\varepsilon}z_s\pi(\mathbf{d}^s)$$

has no instances of mass elimination. If

$$D = \beta(a_1, \ldots, a_c, a_{c+1}),$$

then for a_{c+1} large enough, the above algorithm produces the BS decomposition of D and the coefficients determined by Phase 1 and Phase 3 are linear functions of the z_i 's.

Consider
$$\beta = \beta(a_1, \dots, a_c, a_{c+1})$$
 with a_{c+1} large enough. Then

1. the elimination order of β is compatible with that of $\beta(a_1, \ldots, a_c)$;

- 1. the elimination order of β is compatible with that of β (a₁,..., a_c);
- 2. the elimination order of β stabilizes;

- 1. the elimination order of β is compatible with that of $\beta(a_1, \ldots, a_c)$;
- 2. the elimination order of β stabilizes;
- 3. the coefficients from Phase 1 and Phase 3 are given by linear polynomials in a_{c+1};

- 1. the elimination order of β is compatible with that of $\beta(a_1, \ldots, a_c)$;
- 2. the elimination order of β stabilizes;
- 3. the coefficients from Phase 1 and Phase 3 are given by linear polynomials in a_{c+1};
- 4. the recursive algorithm produces the original BS decomposition;

- 1. the elimination order of β is compatible with that of $\beta(a_1, \ldots, a_c)$;
- 2. the elimination order of β stabilizes;
- 3. the coefficients from Phase 1 and Phase 3 are given by linear polynomials in a_{c+1};
- 4. the recursive algorithm produces the original BS decomposition;
- 5. the number of terms in the BS decomposition of β is constant.

If $a=\sum_{i=1}^c a_i$ and $a_{c+1}>max\{a,\frac{r_i}{z_i},\dots,\frac{r_\epsilon}{z_\epsilon}\}$, then

$$\begin{split} \beta &= \sum_{s=1}^{\varepsilon-1} (z_s a_{c+1} - r_s) \pi(e^s) \\ &+ \sum_{s=\varepsilon+1}^{\delta} (c!) (a_1 ... a_c) \left(a_{c+1} - \left(\sum_{i=1}^{s-n} a_{c+1-i} - a_i \right) \right) \pi(e^s) \\ &+ \sum_{s=1}^{\varepsilon-1} (z_{\varepsilon-s+1} a_{c+1} - r_{\varepsilon-s+1}) \pi(e^{\varepsilon-s+1})^* \end{split}$$

where

$$r_k = \left(\frac{j_k - a}{p_k} b_k - \sum_{s=1}^{k-1} \frac{\pi(\boldsymbol{d}^s)_{i_k, j_k}}{p_k} r_s\right) \text{ and } \beta(a_1, \dots, a_c) = \sum_{s=1}^{\varepsilon} z_s \pi(\boldsymbol{d}^s).$$

