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The Betti diagram of an S-module M tabulates the ranks of the free modules
in the free resolution of M:
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Theorem (Boij-Soderberg (n < 2), Eisenbud-Schreyer (all n))

For every S-module M, there exists a unique list of totally ordered degree
sequences d' < --- < d" so that

B =Y am (d)

where @i € Q>o.
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MOTIVATING QUESTION

The Betti diagram of a complete intersection M = S/(fi,. .., fq) over the ring
S is determined by the degrees of its minimal generators.

Example

If S=k[x] and M = S/(f), then B(M) = deg(f) - 7 (0, deg(f)).
If S =k[x,y] and M = S/(f, g), then

B(M) = deg(f) deg(g) - 7 (0, deg(f), deg(f) + deg(g))

+ deg(f) deg(g) - 7 (0, deg(g), deg(f) + deg(g)) -

Question

For S =Kk[xi,...,Xq] and any complete intersection M where
B(M) = g (dm) +o 4 (d(r)) ,

is there a uniform formula for determining g; and d? in terms of deg(f;)?



THE CODIM 3 CASE

Proposition (GJMRSW 2015)

Let S be k[xi, x2,x3], and let | = (f;,f,, f3) be an ideal generated by a
homogeneous regular sequence with deg(f;) = a; where a; < aj4 for all i.
Then

B(S/1) = aax(az+as) -7 (0,a1,a1 + az, a1 + a, + as)
+ a1a2(as — a1) -7 (0,a2,a1 + a2, a1 + a2 + a3)
+ 2a1a2(a1 + as — a2) - w(0,a2,a1 + a3, a1 + a2 + as)
+ a1az(as —a1) - 7(0,a3,a1 + az, a1 + a2 + a3)

+ a1ax(az +a3) - w(0,a3,a, + as, a1 + a2 + as) .
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COMPATIBILITY AND STABILIZATION OF ELIMINATION TABLES
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EXAMPLE

. Phase 1: Calculate the decomposition of
Bc and form coefficients for first third of Be1.
Eliminate entries of 841 according to
elimination order of 3.

. Q Phase 2: Eliminate entires left to right

along the columns.

. <> Phase 3: Finish eliminating the diagram

using the dual of the pure diagrams from the
first half of the algorithm.



MAIN THEOREM (GHS 2017)

Assume the betti diagram of the complete intersection generated in degrees
a1 < ... < acwith BS-decomposition

B(ar,...,ac) =Y zsm(d)
s=1

has no instances of mass elimination. If
D=4(a1,...,ac,ac1),

then for ac4q large enough, the above algorithm produces the BS
decomposition of D and the coefficients determined by Phase 1 and Phase 3
are linear functions of the z's.
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COROLLARIES

Consider 8 = B(a1,...,ac,act1) With acyq large enough. Then

1. the elimination order of 8 is compatible with that of A(as, ..., ac);
2. the elimination order of 3 stabilizes;

3. the coefficients from Phase 1 and Phase 3 are given by linear
polynomials in ac4s;

4. the recursive algorithm produces the original BS decomposition;

5. the number of terms in the BS decomposition of 3 is constant.



DETAILS

Ifa=>3",a and acy1 > max{a, %, ..y 3}, then
e—1
§=3(zaca —r)m(e)
s=1
8 s—n
+ Z (cH(ar...ac) (d - <Z Acpi d>>7r(es)
s=e+1 i=
e—1
+ Z(Zs—s+1ac+1 — rs—s+1)71'(ea_s+1)*
s=1
where

s=1

. k—1 €
_ &)
Mo = (Jkpk Ay — > W(pzk’”rs> and B(an,...,ac) = »_ zem(d°).
s=1






