SYZYGY: WHEN SUBMODULES ALIGN

Courtney Gibbons Hamilton College MathFest 2019 August 4, 2019

Syzygy

- \cdot noun. The collinear arrangement of celestial bodies.
- \cdot noun. The kernel of ∂_i in a **free resolution** of an *R*-module *M*.

WHAT?

Recall

Given a field F and a set V, V is an F-vector space provided:

- V is an abelian group under vector addition, and
- · scalar multiplication $F \times V \rightarrow V$ has an identity scalar, is associative, and is distributive over scalar addition and vector addition.

Definition

Given a ring *R* and a set *M*, *M* is an *R*-module provided:

- \cdot M is an abelian group under vector addition, and
- scalar multiplication $R \times M \rightarrow M$ has an identity scalar, is associative, and is distributive over scalar addition and vector addition.

Let A, B, and C be three R-modules. Consider homomorphisms f and g:

- ker(f) is a submodule of B
- im(g) is a submodule of B

If $f \circ g = 0$, then $im(g) \subseteq ker(f)$, and we can form the quotient *R*-module ker(f) / im(g).

Definition

A sequence of such modules A_i and homomorphisms $A_i \xleftarrow{\partial_{i+1}} A_{i+1}$ is called a **complex of** *R*-modules.

Question

When does $im(\partial_{i+1}) = ker(\partial_i)$?

HOW?

Let R be a commutative ring with 1 and let M be an R-module.

Definition

The complex $0 \leftarrow F_0 \xleftarrow{\partial_1}{} F_1 \xleftarrow{\partial_2}{} F_2 \xleftarrow{\partial_3}{} \cdots$ of free¹ *R*-modules is called a *free resolution of M* provided:

- $\cdot M = F_0 / \operatorname{im}(\partial_1)$ and
- · $\operatorname{im}(\partial_{i+1}) = \operatorname{ker}(\partial_i)$ for all $i \geq 1$.

In this situation, we call ker(∂_i) the *i*-th syzygy of *M* and write Syz_i(*M*) when the free resolution is minimal.²

²Minimal: $\partial F_i \subseteq \mathfrak{m}F_{i-1}$ in a local ring (we need this to use NAK to make sure ranks are well-defined)

¹no relations; a direct sum of copies of *R*

Let $R = \mathbb{Q}[x]$ and $M = \mathbb{Q}[x]/(x^2)$.

A free resolution of *M* over *R* is given by

$$0 \longleftarrow F_0 = \mathbb{Q}[x] \xleftarrow{\partial_1}{} F_1 = \mathbb{Q}[x] \xleftarrow{\partial_2}{} 0$$
$$x^2 f \xleftarrow{} f \quad 0 \xleftarrow{} 0$$

Let's check.

$$M = F_0 / \text{ im } \partial_1?$$

$$F_0 = R \text{ and im}(\partial_1) = \{x^2 f | f \in R\} = (x^2)$$

$$(\partial_2) = \text{ker}(\partial_1)?$$

$$(im(\partial_2) = 0 \text{ and ker}(\partial_1) = \{f \in R | x^2 f = 0\} = 0$$

WHO? WHEN? WHY?

- $\cdot\,$ David Hilbert: Studying invariants at the turn of the 20th century.
- \cdot Counting (a way to calculate the Hilbert function of a graded ring)
- Understanding relations among (relations among (relations among (...))) a system of polynomials
- $\cdot\,$ Calculating ranks of Tor or Ext modules.

Definition

The minimal number of generators of $(Syz_i(M))_j$ is called the *i*, *j*-**th graded Betti number of** *M*, denoted $\beta_{i,j}(M)$; we arrange them in a **Betti table** denoted by $\beta(M)$. In the table, *i* indexes columns and *j* indexes rows.³

- · Hilbert's Syzygy Theorem: $R = k[x_1, \dots, x_d] \implies \beta_{d+i,j}(M) = 0$ for all $i \ge 1$
- · (Corollary to) Eisenbud's Matrix Factorization Theorem:

 $R = k[x_1, \dots, x_d]/(f) \implies Syz_{d+k}(M) = Syz_{d+k+2}(M)$ for all $k \ge 1$, and $\beta_{d+1}(M) = \beta_{d+k}(M)$ for all $k \ge 1$

- · Boij-Söderberg Theorem: $R = k[x_1, \ldots, x_d] \implies \beta(M) = \sum r_i \beta(\pi_i)$ where $r_i \in \mathbb{Q}_{\geq 0}$, π_i pure
- · [G (thesis)] R short Gorenstein ring $\implies \beta(M)$ determined by finite number of columns; upper bound can be determined from the first column

³ish...the entry in the *i*-th column, *j*-th row is $\beta_{i,j+i}(M)$.

WHERE?

The Geometry of Syzygies, David Eisenbud

Graded Free Resolutions, Irena Peeva

Six Lectures in Commutative Algebra, Chapter 1: Infinite Free Resolutions, Luchezar L. Avramov