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OVERVIEW

Problem. Model to use is known and data is available = MLE.

Parametrize. Build a matrix A to parametrize the model.
“Statistical models are algebraic varieties.” - T. Kahle

Scale. Scale the the model in different ways to study ML degree.
Polytope. Study properties of the polytope Q of A.

Theorems. Prove theorems about the way ¢ changes the number of
solutions to the maximum likelihood equations for the
model.
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EXAMPLE: CORONARY DISEASE RISK FACTORS

Four (binary) variables

Smoker; High blood pressure;
Family history of heart disease; High lipoprotein ratio;
X :Joint binary random variable (X1, X2, X3, X4).

i,j,k,t€{0,1}
pijkl = prOb(X1 = i7X2 :j7X3 = ka)(" = Z)

Ujjre = data vector; Uoooo = 297/, U100 = 2757 oo Uy = Z Ujjre = 1847.
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MODEL AND PARAMETRIZATION

Parametrize and build a matrix:

1001

This graph encodes independence statements: X;
and X5 independent given X, and X, and vice versa.

0110

S

For each vertex, record the “on states” of X; in the joint random variable
X. For each edge XXy, record the combinations of on states of both X;
and Xy.

Parameters: 60001, 0010, 01005 61000, Bo011, Go110, G100, G1001

Make a matrix...
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MODEL AND PARAMETRIZATION

Label the rows of a matrix A by the # parameters and the columns by
the probabilities poooo, Pooots - - - , P11

Place a 1in an entry if the parameter label is termwise less than or
equal to the probability label.

Poooo Pooot Pooto Poott Potoo Poto1 Potio Pottt P1ooo P1oo1 P1o1o P1o11 P1ioo P1ot P1io Pim

S T1T 11Tt 11111 1111

S61000 o o o0 o0 o0 o0©oO0O©Oo0O T 11TI1T 1T 1T 1T 1T 11
SOo100 o o0 o o011 11 0 0 O0O0 1T 1T 1T 1
S6oo10 o o011 00 11T 1T 0 01T 1T 0 0 1 1

A= s0poo1 o1 o010 101 0 1 0 1T 0 1T 01
SO1100 o 0 0 0 0o oo o0 o0 O0O0OO0OT1T 1T 11
S61001 o 0 0 o0 o o o0 o0 01T 01T 0 1T 01
SOono o 0 o0 o0 oo 11T o0 0O O0OOO0OO0O T 1
SOoon o o0 01 0 O0OTTOOOT1T O O0O 0 1
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TORIC VARIETY

Let V be the Zariski closure of the image of
wc . ((C*)Q N (C*)%
(S, 01, .., 05) — (€150 P 50902 s

for some ¢ € (C*)",

Eg, for the matrix A on the previous slide,
1/J(C1 """ 616)(9) = (Co000S, - - - , C010150010000001, - - -)-

Let f=371%, 0. (The image of 6 is in the hyperplane 3=, pijre — 1)

(Statisticians: these are probabilities, so sf = 1)
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TORIC VARIETY

The Zariski closure VI~ of the image of this parametrization is a toric
variety defined by the following prime ideal:

I = { pionpiio — ProioPimt, PorniPror — Poio1Pim,
P1001P1100 — P1000P1101, Pot1oP1100 — Po1ooP11105 Poot1P1oo1 — Pooo1P1011,
Poot1Po1o — PootoPo111, Pooo1Potoo — PooooPo1o1, PootoP1ooo — PooooP1010,
PolooPo111P1001P1010 — Po101Po110P1000P1011, Poo10Po101P1011P1100 — Poo11Po100P1010P 11015
Pooo1Po110P1010P1101 — Po010P0101P1001P11105 Pooo1Po111P1010P1100 — P0o011P0101P1000P1110 5
PooooPoo11P1101P1110 — P0001P0010P1100P1111,  P0000P0o111P1001P1110 — Pooo1Po110P1000P11115

PooooPor1P101P1100 — Poo11P0100P1000P111, PooooPotioP1011P101 — Poot10P0100P1001P 1111 ) -
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LIKELIHOOD EQUATIONS

Given a data vector u, let

Uoooo Uooot |, . pUmw
11

Ly(p) = Poooo * Pooot
’ B (Poooo + « + + =+ Prrr)Uoooo - urm .

Goal: find a probability distribution p = (p1,...,Pn) in V which maximizes ..
Such a probability distribution p is a maximum likelihood estimate, and p
can be identified by computing all critical points of £, on V.

Let u = (Uoooo, - - -, unm) and recall uy = 37, Ujjre. Using Lagrange
multipliers, we obtain the likelihood equations for the variety V:
1=5sf
of
(Au), = usshi o fort=1,....d 1.

The (only real) solution to the ML equations is the only real point in the
variety over these polynomials.
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INQUIRIES

The binary 4-cycle parametrized with ¢ = (1,...,1) has degree 64 (use your
favorite software or theorem to prove this) and ML degree...13.!
1. For what ¢ does MLdeg(V<) = MLdeg(V("+D)?

2. How does the choice of ¢ affect how much MLdeg(V*) drops from
deg(v(hnﬂ))?

"This was first computed in [GMS06, p. 1484]
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DISCRIMINANTS AND DETERMINANTS [GKZ94]

The Main Idea: For A, the associated projective variety V, and polynomial
f=312, c0° ™, define the variety

Va = {c € (Cc)"°

36 € (C*)? where fand its partials by 6; all vanish},
and then look at an irreducible polynomial that vanishes on V(A). If this

polynomial is unique (up to scalar multiple), then it is called the
A-discriminant, A(f).
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THE PRINCIPAL A-DETERMINANT [GKZ94]

When the toric variety V is smooth, and Q is the lattice polytope whose
vertices are columns of A, the Principal A-determinant is

Ea(f) = H Arpa
I nonempty
face of Q

where ' N A is the matrix whose columns correspond to the lattice points
contained in I'. The locus of Ea(f) is denoted Xa.

When V'is a toric hypersurface, Ea(f) = Ax(f) (and is easy to calculate).

Courtney R. Gibbons n



BINARY 3-CYCLE

The binary 3-cycle can be parametrized by

B= Pooo  Poor  Poio Porr Pwoo  Pio1 Pro Pn
1 1 1 1 1 1 1 1 1
0| 0 0 0 0 1 1 1 1
0,10 0 1 1 0 0 1 1
61 0 1 0 1 0 1 0 1
6,10 0O 0 O 0 0 1 1
05| 0 0 0 1 0 0 0 1
/\0 O 0O 0 O 1 0 1

and has kernel ker(B) = (1, =1, =1,1,=1,1,1, =1)".

Thus B is a hypersurface generated by pooopo1Pio1P110 — Poo1PoroProopP1n, and
EBf = As(f) = CoooConCr01C110 — Coo1Co10C100Cm-
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MAIN RESULT

Theorem (MRC Likelihood Geometry Group)

Let V¢ C P"~" be the projective variety defined by the monomial
parametrization ¢ : (C*)¢ — (C*)" where

(S,01,0,...,04_1) = (150U, 250, ..., CprsH™),

and c € (Cx)" is fixed. Then MLdeg(V*) < deg(V) if and only if c is in the
principal A-determinant of the toric variety V = V.
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COMPUTING THE ML DEGREE WITH THE PRINCIPAL G-DETERMINANT

Proposition (MRC Likelihood Geometry Group)

The ML degree of the binary 3-cycle is 4 unless ¢ € (C*)¥*'is in L. If c € Xa,
then MLdeg(V°) = 3.

Proof.

Observe that V¢ is a hypersurface with generator g(p). Then Ea(f) = g(c). Fix
a useful monomial ordering.

Find a Grobner basis for

I=(g, Aa, MLE equations).

Use [GS] and a random data vector u to calculate a Grobner basis
{g1=2D0n,0,...,0:5} for .
Analyze degrees of the leading terms under the assumption that ¢, € C*

and satisfies the equation g1 = Aax = 0: g, is a univariate polynomial in pin
of degree 3, and the initial terms of g3 through g:s have degree 1in pj,. O
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COMPUTING THE ML DEGREE WITH THE PRINCIPAL G-DETERMINANT

For the binary random 4-cycle, here is what we know:

The polytope Q has 24 facets, of which 5 are simplices and 3 are
hypersurfaes. There are 16 with nontrivial discriminants.

We calculated these yesterday in [GS]!
We have not analyzed them yet.
There are 168 codimension two faces of Q, and 88 are not simplices. Of
these:
a) 24 faces have 8 vertices. They're all simplices or arise from hypersurfaces.
b) 32 faces have 9 vertices. There is only one whose discriminant does not lie
on coordinate hyperplanes. It's generated by
€0110€1000€1011€1101 + C0100C€1001€1011C1110 — C0100C1001C1010C1111 -

c) 32 faces have 10 vertices and their discriminants all lay on coordinate
hyperplanes.
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