
mle degree of discrete random cycles

Courtney R. Gibbons
August 4, 2017



ams math research community

arXiv:1703.02251 NSF Grant Number DMS 1321794

Joint work with Carlos Améndola, Nathan Bliss, Isaac Burke, Martin Helmer,
Serkan Hoşten, Evan D. Nash, Jose Israel Rodriguez, Daniel Smolkin

Likelihood Geometry at SIAM AAG 2017 Courtney R. Gibbons 1

https://arxiv.org/abs/1703.02251


overview

Problem. Model to use is known and data is available =⇒ MLE.
Parametrize. Build a matrix A to parametrize the model.

“Statistical models are algebraic varieties.” – T. Kahle
Scale. Scale the the model in different ways to study ML degree.

Polytope. Study properties of the polytope Q of A.
Theorems. Prove theorems about the way c changes the number of

solutions to the maximum likelihood equations for the
model.
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example: coronary disease risk factors

Four (binary) variables

Smoker; High blood pressure;
Family history of heart disease; High lipoprotein ratio;

X : Joint binary random variable (X1, X2, X3, X4).

i, j, k, ℓ ∈ {0, 1}
pijkℓ = prob(X1 = i, X2 = j, X3 = k, X4 = ℓ)

uijkℓ = data vector; u0000 = 297, u1000 = 275, . . . u+ :=
∑

uijkℓ = 1841.
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model and parametrization
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This graph encodes independence statements: X1
and X3 independent given X2 and X4 and vice versa.

Parametrize and build a matrix:

• For each vertex, record the “on states” of Xt in the joint random variable
X. For each edge XtXt′ , record the combinations of on states of both Xt
and Xt′ .

Parameters: θ0001, θ0010, θ0100, θ1000, θ0011, θ0110, θ1100, θ1001

• Make a matrix...
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model and parametrization

• Label the rows of a matrix A by the θ parameters and the columns by
the probabilities p0000,p0001, . . . ,p1111.

• Place a 1 in an entry if the parameter label is termwise less than or
equal to the probability label.

p0000 p0001 p0010 p0011 p0100 p0101 p0110 p0111 p1000 p1001 p1010 p1011 p1100 p1101 p1110 p1111

A =

s
sθ1000
sθ0100
sθ0010
sθ0001
sθ1100
sθ1001
sθ0110
sθ0011



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1


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toric variety

Let V be the Zariski closure of the image of

ψc : (C∗)9 −→ (C∗)16

ψc(s, θ1, . . . , θ8) 7−→ (c1sθcol1(A), c2sθcol2(A), . . . , c8sθcol8(A))

for some c ∈ (C∗)16.

Eg, for the matrix A on the previous slide,

ψ(c1,...,c16)(θ) = (c0000s, . . . , c0101sθ0100θ0001, . . .).

Let f =
∑16

t=1 ctθ
colt(a). (The image of θ is in the hyperplane

∑
ijkℓ pijkℓ − 1.)

(Statisticians: these are probabilities, so sf = 1)
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toric variety

The Zariski closure V(1,...,1) of the image of this parametrization is a toric
variety defined by the following prime ideal:

I = ⟨ p1011p1110 − p1010p1111, p0111p1101 − p0101p1111,
p1001p1100 − p1000p1101, p0110p1100 − p0100p1110, p0011p1001 − p0001p1011,
p0011p0110 − p0010p0111, p0001p0100 − p0000p0101, p0010p1000 − p0000p1010,
p0100p0111p1001p1010 − p0101p0110p1000p1011, p0010p0101p1011p1100 − p0011p0100p1010p1101,
p0001p0110p1010p1101 − p0010p0101p1001p1110, p0001p0111p1010p1100 − p0011p0101p1000p1110,
p0000p0011p1101p1110 − p0001p0010p1100p1111, p0000p0111p1001p1110 − p0001p0110p1000p1111,
p0000p0111p1011p1100 − p0011p0100p1000p1111, p0000p0110p1011p1101 − p0010p0100p1001p1111 ⟩.
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likelihood equations

Given a data vector u, let

ℓu(p) =
pu0000
0000 · pu0001

0001 · · ·p
u1111
1111

(p0000 + · · ·+ p1111)u0000+···+u1111
.

Goal: find a probability distribution p̂ = (p̂1, . . . , p̂n) in V which maximizes ℓu.
Such a probability distribution p̂ is a maximum likelihood estimate, and p̂
can be identified by computing all critical points of ℓu on V.

Let u = (u0000, . . . ,u1111) and recall u+ =
∑

ijkℓ uijkℓ. Using Lagrange
multipliers, we obtain the likelihood equations for the variety V:

1 = sf
...

(Au)t = u+sθt
∂f
∂θt

for t = 1, . . . ,d− 1.

The (only real) solution to the ML equations is the only real point in the
variety over these polynomials.
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inquiries

The binary 4-cycle parametrized with c = (1, . . . , 1) has degree 64 (use your
favorite software or theorem to prove this) and ML degree…13.1

1. For what c does MLdeg(Vc) = MLdeg(V(1,...,1))?
2. How does the choice of c affect how much MLdeg(Vc) drops from
deg(V(1,...,1))?

1This was first computed in [GMS06, p. 1484]
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discriminants and determinants [GKZ94]

The Main Idea: For A, the associated projective variety V, and polynomial
f =

∑16
t=1 ctθ

colt(A), define the variety

∇A =

{
c ∈ (C∗)16

∣∣∣∣∃θ ∈ (C∗)9 where f and its partials by θt all vanish
}
,

and then look at an irreducible polynomial that vanishes on ∇(A). If this
polynomial is unique (up to scalar multiple), then it is called the
A-discriminant, ∆A(f).
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the principal a-determinant [GKZ94]

When the toric variety V is smooth, and Q is the lattice polytope whose
vertices are columns of A, the Principal A-determinant is

EA(f) =
∏

Γ nonempty
face of Q

∆Γ∩A

where Γ ∩ A is the matrix whose columns correspond to the lattice points
contained in Γ. The locus of EA(f) is denoted ΣA.

When V is a toric hypersurface, EA(f) = ∆A(f) (and is easy to calculate).
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binary 3-cycle

The binary 3-cycle can be parametrized by

B = p000 p001 p010 p011 p100 p101 p110 p111

1
θ1

θ2

θ3

θ4

θ5

θ6



1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1


and has kernel ker(B) = (1,−1,−1, 1,−1, 1, 1,−1)T.

Thus B is a hypersurface generated by p000p011p101p110 − p001p010p100p111, and
EBf = ∆B(f) = c000c011c101c110 − c001c010c100c111.
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main result

Theorem (MRC Likelihood Geometry Group)

Let Vc ⊂ Pn−1 be the projective variety defined by the monomial
parametrization ψc : (C∗)d −→ (C∗)n where

ψc(s, θ1, θ2, . . . , θd−1) = (c1sθa1 , c2sθa2 , . . . , cnsθan),

and c ∈ (C∗)n is fixed. Then MLdeg(Vc) < deg(V) if and only if c is in the
principal A-determinant of the toric variety V = V(1,...,1).
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computing the ml degree with the principal a-determinant

Proposition (MRC Likelihood Geometry Group)

The ML degree of the binary 3-cycle is 4 unless c ∈ (C∗)d+1 is in ΣA. If c ∈ ΣA,
then MLdeg(Vc) = 3.

Proof.

Observe that Vc is a hypersurface with generator g(p). Then EA(f) = g(c). Fix
a useful monomial ordering.

Find a Gröbner basis for

I = ⟨ g , ∆A , MLE equations ⟩ .

Use [GS] and a random data vector u to calculate a Gröbner basis
{g1 = ∆A, g2, . . . , g15} for I.

Analyze degrees of the leading terms under the assumption that cijk ∈ C∗

and satisfies the equation g1 = ∆A = 0: g2 is a univariate polynomial in p111
of degree 3, and the initial terms of g3 through g15 have degree 1 in pijk.
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computing the ml degree with the principal a-determinant

For the binary random 4-cycle, here is what we know:

• The polytope Q has 24 facets, of which 5 are simplices and 3 are
hypersurfaes. There are 16 with nontrivial discriminants.

• We calculated these yesterday in [GS]!
• We have not analyzed them yet.

• There are 168 codimension two faces of Q, and 88 are not simplices. Of
these:
a) 24 faces have 8 vertices. They’re all simplices or arise from hypersurfaces.
b) 32 faces have 9 vertices. There is only one whose discriminant does not lie

on coordinate hyperplanes. It’s generated by

c0110c1000c1011c1101 + c0100c1001c1011c1110 − c0100c1001c1010c1111.

c) 32 faces have 10 vertices and their discriminants all lay on coordinate
hyperplanes.
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